
uClinux on COBRA5329 and general
notes on MMU-less systems running

Linux
Oskar Andreasson

oan@frozentux.net

Copyright © 2007,2008 Oskar Andreasson

This article is a spawn from my personal notes taken during the last couple of months working the COBRA5329 platform
and the uClinux [UCLINUX] distribution. Mainly this is the work and conclusions i’ve drawn from trying to reduce memory
usage in the uClinux kernel, and to save system resources on the platform. The main problem with shipped implementation
and current uClinux implementations are the memory hungryness of the kernel and lack of a good working memory
management system. From a pure hardware standpoint, this is also a discussion about the MMU-less problems and possible
ways to help eliminate them.



Introduction
The goal of the original project was simple enough
once I originally heard it, get a working linux 2.6
system on Coldfire 5329 evaluation board
[COBRA5329KIT], and then get a graphical system
running on top of it. Unfortunately the requirements
was never fully apprehended by anyone in the project,
and no feasibility studies had been done to begin with.
Interested parties can be divided into three groups,
board of directors (representing customers), software
management and hardware management. Extracting
and piecing together requirements has unfortunately
been a part of this work. All the requirements can
hence be summed up as follows:

• Coldfire CPU family

• Modern GUI

• GUI easily portable between windows and host
platform

• Short development time to meet TTM requirements

• Ability to run GUI and application with close to
realtime responsiveness

• Extreme robustness and reliability

• Very long life expectancy of product, and availability
of updates must be without doubt

• New functionality for future revisions and updates of
the product must be possible

Without wallowing in the above requirements, I will dig
into the software side problems that arose from these
decisions on a low level. This paper discusses the
hardware and software limitations that must be known
to make a real decision about the viability of the
Coldfire 53xx CPU’s [MCF532X] in a specific
application. It is very well suited for certain types of
applications but in our case turned out to be far below
required functionality to cover the requirements set up,
mainly because of one lacking component, the MMU
[MMU].

Memory
Linux memory management is the largest difference
between uClinux and normal Linux. The largest
problems with MMU-less processors such as the
Coldfire core version 3 series, is the inability to handle
virtual memory mappings. There are of course other

inabilities such as memory protection, but this is minor
in comparison to the virtual memory maps.

Figure 1. MMU-full memory usage

Memory usage on an MMU-full processor using
SLAB. Different memory areas can be connected into
virtual memory mappings using the MMU.

Modern Linux kernels has 3 different memory
allocators to chose from, SLAB [SLAB], SLOB [SLOB]
and SLUB [SLUB], working in accordance with slightly
different principles. These principles make them more
or less efficient for MMU-less systems, but in the end
all three are mainly developed for MMU-full systems.
In the older 2.4 kernels there is also a NPO2-allocator
which was never ported forward to the 2.6 kernels,
unfortunately.

Figure 2. SLAB memory splitting & usage

SLAB memory splitting & usage in normal
circumstances. Different sized memory blocks are
created at init, and prefered sizes are used/created
(by mapping different areas together) for the task at
hand at allocation.

MMU-less systems will work badly with the default
SLAB memory allocator. SLOB is best suited while
SLUB is slightly better than SLAB. Without the MMU,
the cpu can not connect separate SLAB nodes, hence
limiting yourself to the largest SLAB size in memory
usage per process for the .data and .BSS or .text
segment, or for any memory allocation for that matter.
This means your application, or allocations from within
your application, can never be larger than the largest
allocatable block of memory, which was decided on
bootup of the system by the SLAB initializer.

2



uClinux on COBRA5329 and general notes on MMU-less systems running Linux

SLAB is a power of 2, allocate at init, type of memory
handler. With MMU these can be connected. Without
they can’t, hence you are limited to the largest
allocated memory chunk, at init time. At init, it assigns
specific numbers of blocks with different power of 2
sizes. More of the small sizes, and the larger the
chunks get, the less of them. Also worth noting, a
small amount of this memory is used up for memory
handling usage, hence allocating 128kb for example,
might turn up with a 256kb block.

Figure 3. SLOB at start without MMU

Sample of how SLOB works without an MMU at start.
Notice the red areas which have been allocated. In the
next image, they are deallocated, but the blue area
remains allocated.

Figure 4. SLOB after deallocation without MMU

In this image the two areas have been deallocated.
Unfortunately, we do not have an MMU to virtually
map them together, so the next application that might
want the size of both red areas can not allocate them.
Defragmentation has started to wear on the system.

SLOB is non power of 2, allocate when needed, type
of memory handler (K&R UNIX heap basically), with
buddy freeing. Allocate memory when needed, and as
much as needed, once finished, free the memory, look
for boundary memory that’s free and connect free
area to that. This makes it possible to run larger
applications on small systems. Side-effect is
fragmented memory (several small objects next to
eachother, one in the middle is freed and reported as
such, but cant be used by larger objects. Let these
allocation/deallocations go on for long enough, and
you wind up with a "defragmented" memory. Former
Amiga people should be very well aware of these
problems.

Figure 5. SLUB example allocations

This is an example on how SLUB might allocate
memory. Main point of interest, all allocations are
power of 2 sized, but they are not allocated at init as in
SLAB. Some of the problems still exist for SLUB as for
SLAB on MMU-less systems.

SLUB seems to be a power of 2, allocate when
needed, type of memory handler. Unfortunately,
memory allocated seem to be unreclaimable. Ie, using
memory for init applications, then trying to create a
single application reusing that initial memory for a
larger block, is impossible. The allocated block in this
position remains the same and can not be changed. It
can be reused by smaller applications/allocations, but
not by larger -- unless you got an MMU of course, in
which case you can virtually map it together with other
memory.
The development time to simply get a working
memory implementation on a lot of MMU-less
systems are simply not worth the little money you
save on hardware. Also, system stability takes a big hit
if you have a lot of memory usage (malloc, realloc,
free, etc) on sparse memory systems (<16mb ram,
<16mb flash). A gathered effort is needed either by
interested parties, or by the open source development
community, to properly accommodate for the spartan
environments of MMU-less devices, as the current
implementations are simply not efficient and reliable
enough.

Program sizes
For some reason, not a single binary compiled from
companies get anywhere close to the sizes they state
being their "stripped down size". Most companies
state their library sizes in I386/x86 compilations. It
might be due to the CISC architecture that these
binaries get fairly small on those architectures.
Another possibility is that a fairly large amount of
people don’t count the library sizes (it’s not "part" of
the application when dynamically linked).
GTK+ [GTK] stripped winded up 7.5MB (we could’ve
put a lot more effort into stripping out unneeded code
from that, and DirectFB [DIRECTFB] proved a big

3



uClinux on COBRA5329 and general notes on MMU-less systems running Linux

problem, not supporting static linking very well).
According to some sites, this should be possible in
1.5MB, but no arch mentioned.
Qtopia [QTOPIA] winded up around 4.4MB to be
useful, 2.3MB with only QtCore. This is after having a
lot of help from trolltech and consultants, stripping out
everything not needed. According to trolltech, 1MB for
maximum stripped lib, and around 2MB for a usable
implementation, should be possible.
DirectFB [DIRECTFB] has serious troubles with static
linking since they rely on a lot of function constructor
and destructor functions, and need to dynamically
load symbols etc. Hence it needed to be completely
built into the end application, without serious recoding.
Hence, 2.3MB to get a hello world program to work,
and >4MB memory usage. DirectFB uses function
constructors and destructors to dynamically load
different libraries during runtime -- and since the
m68knommu platform has very bad and buggy
dynamic lib support -- it was not an option.
Rule of thumb, everything gets at least 2x as large as
claimed.

Alternative solution for big
applications
This is applicable if you want to run application from
RAM for speed considerations, but dont have large
enough block for it and no other memory allocators
works properly.

This is a serious hack!

1. Only allocate part of memory for kernel, ie,
RAMBASE + RAMSIZE smaller than reality.

2. Set FLAT_FLAG_* to some value, set value on
application via modified flthdr program (in
toolchain). Then modify either do_mmap() or
binfmt_flat.c loader to allocate memory to
hardcoded memory range, if FLAT_FLAG_* is set.

3. Specific area needs to be defined for both
.text/.bss and .data segments unless
FLAT_FLAG_RAM is set, in which case memory
for complete blob needs to be available.

4. This is currently done by setting address directly
in flat_load_file, without using do_mmap atm.
Should be fixed.

This in turn creates other problems, since memory is
stolen from kernel, kernel will not realize the real size
of memory. Sidenote, using mem=8M etc does not
work on coldfire arch, since mem size is calculated
with RAMBASE + RAMSIZE. This in turn leads to
smaller SLAB/SLUB allocations, and since you’re
application is big, you might want large mallocs as
well.. which will not work.
Other stability problems with these changes has been
noted, not sure why at this moment or if it was at all
related since I later discovered that the power supply
used during these tests was malfunctioning and giving
small power fluctuations, enough to reset/deadlock the
CPU. Also a problem with above solution, gdb will not
work. Gdb needs to do things inside the code (set
TRAP’s, etc), and uses mm functions, which are not
aware of the memory (we hardcoded it "not to be
memory").

SLOB mremap brokenness
SLOB reverts to using a lot of SLAB functions, one of
these,

kobjsize(const void *objp)

, can not be used on objects not of SLAB origin. This
is broken in every kernel between 2.6.17 and 2.6.22
that i’ve tried. A flawed fix is to comment out/remove
all the current code in kobjsize and replace it with

return

(ksize(objp));

. There are hints at a proper fix out there, but I didn’t
spend time finding it.

See
http://readlist.com/lists/uclinux.org/uclinux-
dev/1/5622.html. I have yet to find more in this,
my searches are wild and probably in the wrong
direction but ended quick since it was fairly easy
to hack once the problem was understood.

4



uClinux on COBRA5329 and general notes on MMU-less systems running Linux

Fuzzy Logic SLOB
This is a minor idea I had on a new SLAB/SLOB
replacing memory allocator. The actual
implementation of this was out of the scope of the
original project, and finding both the time and
experience to actually implement it is probably out of
any possible timeframe for me at the moment. It would
require heavy changes in gcc, glibc and the kernel
memory management to work. This memory allocator
is particularly interesting on MMU-less systems as it
could possibly solve some of the problems of memory
defragmentation, but it also relies on some heavy
calculations which might be less optimal for small
systems, and it also relies on the non-virtualness of
the MMU-less systems, but which could possibly be
alleviated on MMU-full systems as well. For further
discussion regarding this topic, please contact me and
I will try to explain what I mean.
The idea came while doing this work, and
simultaneously reading a book on Fuzzy Logic. Let
the kernel move the applications and their allocations
between different memory regions. To do this, a few
fundamental changes are required. Kernel must have
knowledge of all taken memory allocations. Kernel
must have knowledge of all pointers to memory
allocations. Applications must have knowledge that
kernel needs knowledge about pointers to memory
allocations. All memory pointers must be reported to
kernel by application.
With this information, the kernel can maintain a list of
references to all memory references (a void **ptr), as
well as a list of all current memory allocations. To
move an allocation, go into uninterruptable mode,
move the chunk of memory to the new location, go
through list of pointers find the ones inside old
memory chunk, change them to the new memory
area, leave uninterruptable mode. This achieves a
memory handler that can be defragmented, but
requires a memory handler that actually implements it.
Enter "Fuzzy Logic SLOB", in lack of a better
description.
The basic idea is to have moving subsets of memory,
each being more or less suitable for different types of
memory allocations. A small memory allocation would
be better suited for a subset with a high fragmentation
and preferably a high usage. A larger memory
allocation would be better suited inside a low
fragmentation and low usage memory subset. Having
the size of each subset move facilitates changing
natures in the system, letting the system adapt to the
kind of workload it copes with. There may be as many

subsets as needed, covering different memory
address zones and handling slightly varying
requirements.
As an allocation is made, the most suitable subset is
evaluated, and memory allocator for the given subset
is tested, if no memory was found, try the next subset,
and so forth. If no sufficiently large memory area is
found, shuffle memory around according to some
algorithm and try to free up a sufficient address area
for the allocation. Of course, when this happens, all
pointers inside applications must be updated.
There are several severe drawbacks of this memory
handler, but in very specific cases it triumphs over
other solutions. For example, the cases where having
an MMU would allow for better memory management,
but not enough to warrant the higher price. In large
mass production, even a single dollar per unit adds up
to millions per year. As it currently stands, you would
either have to get an MMU or a very large RAM to
handle these circumstances in Linux. Having the
option of very slow operation, but decent memory
handling at a very cheap price will be worth it in
several very large mass production scenarios.

Cross-compilers
Some problems that where very hairy to debug, and
some very simple, stemed from the gcc/uclibc
toolchains that we used. None of the newer toolchains
seems to have been properly inserted/tested by the
uClinux community, except for CodeSourcery. Their
pre-built products are extremely nice from what I have
heard, but the build chains are next to impossible to
work with. Hence, we started out with an old
m68k-uclinux-gcc-3.4.0 toolchain that was previously
used on a mcf5272 platform, but some of the
problems encountered made us question this decision
and we went for a m68k-uclinux-gcc-4.1.1 in the end.
It worked fairly well with some minor details.
First off, and most major problem, it does not handle
inlined functions properly without -O2 flag. Code is
lost, without a trace, nor error/warning message. Main
problem in linux kernel seems to be the next_thread

function in include/linux/sched.h. Without
de-inlining this function, kernel will not boot properly. A
lot of time had to be spent with the lauterbach
debugger before I realized what was happening. I
have not done a terrible lot of research on the internet
on this bug, so I don’t know if this is a known bug or

5



uClinux on COBRA5329 and general notes on MMU-less systems running Linux

not. Other changes includes:

• PATH was incorrectly set in build script, and hence
binutils where not available at early stage in build
process.

• uClibc configurations where not copied properly
from/to the correct place in filesystems during build,
and changes to configuration was required to make
it work on the MCF5329 platform. WCHAR support
was a bit of a mess to get since it required setting
"Manuels Hidden Warning messages" to even show
up in the uClibc configuration.

• Gcc would not build by default on our build system,
nothing major. Mainly defines and paths needing
fixes. One of the bigger problems, except for the
above mentioned -O2 and inlining problem, was
some missing support for the ror.w assembler code.
This has been fixed in newer releases of gcc and
was easily dealt with.

• Added libxml2 to buildprocess since it is needed in
the end product. This also added a stage8 in the
build scripts.

• Added support for making "load to special ram"
binaries with the flthdr and elf2flt packages, as
defined in previous part of this article. These
application changes where incredibly simple to
work out.

To summarize the toolchain part of this project, once a
fairly recent and modern gcc was chosen for the
project, no insurmountable or unexpected problems
really arose except for the inlining bug which was
possible to get around once it was known. An even
more modern gcc would have been preferable, but
because of the lack of properly setup chains easily
accessible, we stayed with the 4.1.1 toolchain.

Linux XIP kernel
XIP stands for eXecute In Place [XIP]. In normal
execution, the application (or kernel) is moved to RAM
memory and extracted to create enough size for each
application segment (.bss, .data, etc). XIP makes it
possible to execute the application from their actual
location on harddrive/flash/storage device, only
copying/creating the segments that actually needs to
be moved. This saves a bit of RAM. The coldfire
platform we’ve worked with has 16MB flash and 16MB
sdram, possibly 32MB further down the road. To save
some of this, a XIP kernel was implemented.

XIP is fairly common on coldfire platforms and worked
fairly well with old 2.4 kernels on mcf5272 platforms,
not so on the mcf5329 with a 2.6 kernel. The kernel
contains a .text, .data, .bss and .init segments and on
.init’s end, ROMfs is located. The .bss is empty until
the binary is loaded (and actually zero sized until it is
extracted).
Normal runtime moves the whole binary (including
filesystem!) to ram and then executes, this is actually
done by dBUG, which then enters the kernel at the
_start symbol, which is located at a specific memory
address (0x40020000 on MCF5329 Cobra card).
dBUG needs to be rewritten (in the end we will
probably write a new bootloader) to take care of this.
XIP execution executes from flash directly, not RAM.
Only the parts that must be in ram is moved up to ram,
the rest resides in flash. the bootloader starts
executing the kernel directly at its flash location, and
after this, the _start function must do specific
operations before it can actually start the kernel. .text
should stay in flash (non-alterable code) while .data
and .init must be moved up to RAM (it can be altered)
and finally a zero’d out .bss must be created in RAM.
You will also need to retain some kind of symbol that
points at kernel end in flash, where the ROMfs is
located, otherwise your kernel will once again try to
load it from RAM.
Another problem seems to be that MTD [MTD]
probing can not be done on the same device that the
code is currently executing from. Look in the MTD init
code. I managed to get around this so far by telling it
that the ROM MTD is actually RAM MTD, which is a
rather ugly hack, and which has proven to cause
several mysterious hangs and crashes. A better, but
still not very good hack, would be to hardcode the
abilities in the probing functions instead. The final and
best way would be to enable the probing code to
either probe the device we’re executing from (from
rumours this is not possible due to hardware
limitations), or move the probing code to real RAM,
and then execute it (ie, move the code to .data
segment perhaps in the ld-scripts).

Conclusion
Conclusions are hard to draw from the problems that
we’ve run into so far in this project. In my honest
opinion, I don’t think the hardware platform with the
uCLinux choice is stable enough to warrant a
recommendation for anyone else than hobbyists. I’ve

6



uClinux on COBRA5329 and general notes on MMU-less systems running Linux

long been a pro-Linux user, admin and developer, but
this forray has seriously put some very bad lighting on
Linux as a system to me.
The community support that Linux prides itself in has
been less than optimal, close to impossible to get, the
same goes for commercial support. The state of the
memory management is absolutely horrible for the
hardware/application requirements, and there is next
to no support from the general linux developers to the
people who actually wants to make Linux a viable
option on MMU-less systems from what I’ve seen.
That said, I have full understanding of why or how this
has happened. The development kits from freescale
and its ilk is horribly expensive (in comparison to other
embedded platforms), hence out of reach for a lot of
part time hobbyists. The embedded community is
small and most all developers seem to make their own
little hacks that don’t get caught and put into the
default systems. Also, Linux in general seems to grow
rapidly in desktop and large computational services,
and those are fairly far from embedded solutions, I’d
go as far as saying they are diametrically opposites of
each other. Making a OS that works for both these
opposites would be a gigantic feat in my humble
opinion.
What should be done? I’m not quite sure. I think
Freescale must understand that they need a cheap
and easily available development software platform,
that is open source and well documented and taken
care of, for the coldfire to grab the general Linux
populace attention. A really good starting point would
be to look at the gumstix platform, which is brilliant in
my opinion. The coldfire processors are for cheap
projects in comparison to the Xscale used in gumstix,
hence the development kit(s) should be lower cost
than the gumstix to fully get the user and developer
base required. That said, I’m not totally sure there is a
large enough market for this kind of product, but I
hope so.
This project was a system critical hardware, that must
not fail, and a lot of other must. The hardware platform
together with the chosen software platform proved
insufficient to handle the requirements, which is very
unfortunate. The project has now moved on to a larger
and more expensive hardware platform (Atmel ARM
based), which will cost the company quite a bit in
production -- The product is estimated to sell in
quantities of perhaps 5-20 000 units per year for a
duration of 10-15 years forward, adding an extra
production cost of 10 USD for a larger processor due
to bad software support makes quite a hefty sum in
the end.

On our part, the job of analyzing the demands and
requirements of the platform should have been done
earlier, as well as a feasibility study on the
combination of the hardware and software. The
opposite side nature of the requirements set on the
project has also caused some severe conundrum for
the development team, and the priorities should’ve
been cleared out at an earlier stage as well. This
would have allowed us to either say straight off that it
will not work, or walked away with a less futureproof
version that at least works for now, but perhaps not on
the next platform.

Bibliography

Papers
[OPDEN2006] Michael Opdenacker, Embedded Linux

Optimizations, http://www.embedded-kernel-
track.org/2006/
michael_opdenacker_optimizations.pdf.

[OPDEN2007] Michael Opdenacker, Embedded Linux
kernel and driver development ,
http://fmgroup.polito.it/ cabodi/dida/sp/
embedded_linux_kernel_and_drivers.pdf.

[AN3408] Yaroslav Vinogradov and Roznov pod
Radhostem, Building a Sample CGI Application
- for the uClinux-Targeting ColdFire MCF5329
Evaluation Board , http://www.freescale.com/
files/32bit/doc/app_note/ AN3408.pdf?fsrch=1.

[EMBEDDEDMEDIA] http://free-electrons.com/
doc/embedded_linux_ multimedia.odp.

Hardware
[GUMSTIX] Gumstix Official homepage,

http://www.gumstix.com/.

[GUMSTIXORG] Gumstix Community ,
http://www.gumstix.org/.

[MCF532X] MCF532X: V3 ColdFire Microprocessor
with LCD driver, Ethernet, USB and CAN,
http://www.freescale.com/
webapp/sps/site/prod_summary.jsp?
code=MCF532X&
nodeId=0162468rH3YTLC00M92076.

7



uClinux on COBRA5329 and general notes on MMU-less systems running Linux

[COBRA5329KIT] DragonFire - COBRA5329KIT ,
http://www.ebv.com/en/ products/highlights/
freescale_dragonfire.html.

Web resources
[UCLINUX] uClinux - Embedded Linux/Microcontroller

Project , http://www.uclinux.org/.

[UCDOT] uCDot newssite, http://www.ucdot.org/.

[SLOB] Matt Mackall, slob: introduce the SLOB
allocator , http://lwn.net/Articles/157944/.

[SLAB] Slab allocation (wikipedia),
http://en.wikipedia.org/wiki/Slab_allocation.

[SLUB] Christoph Lameter, Short users guide for
SLUB,
http://www.mjmwired.net/kernel/Documentation/vm/slub.txt.

[DIRECTFB] DirectFB Official Homepage,
http://www.directfb.org/.

[MMU] Memory Management Unit (wikipedia),
http://en.wikipedia.org/wiki/Memory_management_unit.

[MTD] Memory Technology Device (wikipedia),
http://en.wikipedia.org/wiki/Memory_Technology_Device.

[XIP] eXecute In Place (wikipedia),
http://en.wikipedia.org/wiki/Execute_in_place.

[GTKDFB] GTK on DirectFB,
http://www.directfb.org/wiki/
index.php/Projects:GTK_on_DirectFB.

[GTK] The GTK+ Project , http://www.gtk.org/.

[QTOPIA] Trolltech Qtopia,
http://trolltech.com/products/qtopia.

[QTOPIA2] Qtopia Community , http://qtopia.net/.

[GFXQUICKREF] Embedded Linux Graphics Quick
Reference Guide, http://www.linuxdevices.com/
articles/AT9202043619.html.

8


	Introduction
	Memory
	Program sizes
	Alternative solution for big applications
	SLOB mremap brokenness
	Fuzzy Logic SLOB

	Crosscompilers
	Linux XIP kernel
	Conclusion
	Bibliography

	Papers
	Hardware
	Web resources

